
USING FINITE AND INFINITE SUMS TO

DEVELOP ALGORITHMIC THINKING

John M. Morrison

March 10, 2020

1 The sum
∑n

k=1 k
r

All of us have had first-year calculus courses in which this sum arises from the

Riemann sum for the integral
∫ b

0
xr dx.

Typically we would show our students the case of and invoke the formula

n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6
.

Promptly we get asked, “Where did you get that formula?” Verifying a few sim-
ple cases palliates the incurious. Proving it by induction leaves the more inter-
ested student still asking how we got the formula. We shall begin by answering
this question using an algorithm that requires surprisingly little machinery.

We begin by writing down the equation

n∑
k=1

1 = n.

the students easily believe this because they see that the sum of n ones is n.
We then look at the telescoping sum

n∑
k=1

(ak − ak−1) = an − a0.

The middle terms all collapse out, much like the middle pieces of an inexpensive
pocket telescope. We have assembled all the necessary machinery.

To see this in its full generality we must re-index and cancel as follows.

n∑
k=1

(ak − ak−1) =
n∑

k=1

ak −
n∑

k=1

ak−1 = an +
n=1∑
k=1

ak −

(
a0 +

n∑
k=2

ak−1

)
.

1



Now re-index the second sum like so

n∑
k=2

ak−1 =

n−1∑
k=1

ak.

The telescoping sum theorem is now proved. It is a simple exercise to produce
a second proof by doing an induction on n.

Now apply the telescoping sum theorem to the case of ak = k2; we get

n2 = n2 − 02 =

n∑
k=1

k2 − (k − 1)2 =

n∑
k=1

(2k − 1)2.

Next, unpack the summand and separate to see that

n2 = 2

n∑
k=1

k −
n∑

k=1

1 =

n∑
k=2

ak−1 − n.

We rearrange to see that
n∑

k=1

k =
n(n+ 1)

2
.

The reader can now turn the crank for himself. Using the fact that

n3 =

n∑
k=1

k3 − (k − 1)3,

you can expand to see that

n3 = 3

n∑
k=1

k2 − 3

n∑
k=1

k + n.

Solve for
n∑

k=1

k2

as if it were a giant X. You can repeat this procedure and obtain sums for
higher powers.

We will now get a recurrence relation for the general case. For non-negative
integers r and n, we define

Pr(n) =

n∑
k=1

kr.

In the telescoping sum theorem, let ak = kr+1, k ≥ 0. Applying the tele-
scoping sum theorem, we have

nr+1 =

n∑
k=1

kr+1 − (k − 1)r+1.

2



Next, we invoke the Binomial theorem on the power of r + 1 inside the sum to
obtain

nr+1 =

n∑
k=1

kr+1 −

r+1∑
j=0

(
r + 1

j

)
kj(−1)r+1−j

 .

In the parenthesized sum here we see that the j = r + 1 term yields a(
r + 1

r + 1

)
kr+1(−1)0 = kr+1

This causes a cancellation which leaves us with

nr+1 = −
n∑

k=1

r∑
j=0

(
r + 1

j

)
kj(−1)r+1−j

=

r∑
j=0

n∑
k=1

(
r + 1

j

)
kj(−1)r−j

Next, we interchange the sums to obtain

nr+1 = −
r∑

j=0

(
r + 1

j

)
(−1)r+1−j

n∑
k=1

kj

=

r∑
j=0

(
r+

j

)
(−1)r−jPj(n)

= (r + 1)Pr(n) +

r−1∑
j=0

(
r + 1

j

)
(−1)r−jPj(n)

We now isolate the Pr(n) and divide by r + 1 to obtain

Pr(n) =
nr+1

r + 1
+

1

r + 1

r−1∑
j=0

(
r + 1

j

)
(−1)r−jPj(n).

This formula shows us several things. First it computes each polynomial Pr

in terms of its predecessors P0, P1, · · ·Pr.

We know the degree of P0 is 1 since P0(n) = n for all positive integers a
nice example of a poor procedure, the Bozo sort. Imagine you have a list of
names recorded on index cards. Shuffle the cards; check their order and stop if
the order is right. Otherwise, repeat the procedure until the order is correct.

3



Suppose you have n index cards; the probability that any given shuffling places
them in the correct order is . This is a sequence of independent trials with the
same probability of success. The average time to resolution is ; there is no upper
bound on the amount of time the procedure can take. The worst-case scenario
is very bad, indeed. n. By way of induction, assume that deg(Pj) = j + 4. for
all j < r. Our recursive formula allows us to conclude that deg(Pr) ≤ r + 1.
But the only nr+1 term present is

nr+1

r + 1
,

so we have deg(Pr) = r + 1. In fact, we know

Pr(n) =
nr+1

r + 1
+ lower degree terms

so the lead term for Pr is
nr+1

r + 1
.

A nice project for a clever programming student is to use this formula to
compute the Pr polynomials up to a specified degree. This is an excellent little
test for a Python class that handles polynomials with rational coefficients. Note
the Python3 has a new Fraction type; you can create a class for Polynomials
using a list implementation.

In this way, students can use polynomials as if they are a built-in data
type. Developing these classes hugely solidifies the student’s understanding
of algebraic manipulation. As an alternative, students can also program this
in a symbolic super-high-level language such as Maple, Mathematica, Sage or
Macsyma. Note that Sage is freely available.

2 An Analysis of Some Sorting Procedures

Suppose we are confronted with a list or vector of orderable items, such as
numbers, characters, or words. What is an efficient procedure for sorting such
a list or vector? We shall discuss several procedures here and use a bit of the
last section to perform an analysis of the efficiency of these procedures.

Here is a nice example of a poor procedure, the Bozo sort. Imagine you
have a list of names recorded on index cards. Shuffle the cards; check their
order and stop if the order is right. Otherwise, repeat the procedure until the
order is correct. Suppose you have n index cards; the probability that any given
shuffling places them in the correct order is n!.

This is a sequence of independent trials with the same probability of success.
The average time to resolution is n!; there is no upper bound on the amount of
time the procedure can take. The worst-case scenario is very bad, indeed.

4



Next, we shall look at the bubble sort. Suppose we have n items and that
they are shuffled in random order. We shall sort them from smallest to largest.
Begin by examining the first pair of elements. In the manner of a computer
scientist, we shall begin counting at zero; we compare the zeroth and first ele-
ments. These are either in the right or the wrong order; if the order is wrong
fix it, else do nothing. Now go to the next pair, the first and second element.
Check their order; if it is correct, do nothing, else switch them. Continue in this
fashion until you have compared the n − 1th and nth elements. On this first
pass, we have done comparisons. We should also notice that the largest element
has “bubbled up” to the top. Therefore, when we make the second pass, we have
one fewer pairs to check. The second pass takes n - 2 comparisons. Continuing
in this fashion, we make

n−1∑
k=1

k =
n(n− 1)

2

comparisons. The amount of work it takes to sort a list of size n is roughly n2/2.
Observe that there is no luck involved here; you have to do all the comparisons
to do the bubble sort.

Now let us look at the insertion sort. This sort is familiar to anyone who
plays card games such as hearts or bridge. Players often order their cards by
suit (spades, hearts, clubs, diamonds) then by rank, deuce through Ace. As the
player receives each new card, he inserts it in his hand in the proper order. This
is how we proceed in an insertion sort. We start at one end of the list, picking
off the elements in succession, until the list is depleted. We maintain a separate
list, in which we file each element in its proper order.

Here, there is a luck factor involved. The worst case scenario is that when
our sorted list has n items in it. we will have to compare our new element with
all n items. However, this seldom happens. More realistically we have to look
at about n/2 elements.

The worst-case scenario yields

w =

n−1∑
k=1

k =
n(n− 1)

2

comparisons. The average case yields

a =

n−1∑
k=1

k =
n(n− 1)

4

comparisons, about half that of the bubble sort.

For small sorts, the insertion sort is a reasonable choice. Both the insertion
and bubble sort are called quadratic sorts, because the cost of running them
rises quadratically with the size of the job. Quadratic sorts are OK for sorting

5



small collections of sortable objects. But if you want to sort something such as
the Manhattan telephone directory, they become glacially slow.

We will take a look at a sorting procedure called quicksort. This is a recursive
method that, typically, is quite speedy. In the worst case scenario, it becomes
quadratic.

Suppose we have a list of sortable items. Take the list of items and move all
of the items smaller than the zeroth item to the left of the zeroth item and all
larger ones to the right. This procedure is called a pivot. Now call quicksort on
the two sub-lists on either side of the pivot. Do this recursively. The base case
occurs when a sub-list has one element; in this event it is sorted.

Let us define by T (n) the time it takes to sort a list of n elements. The
pivot procedure requires roughly n checks. Let us make the seemingly bold
assumption that the pivot winds up roughly near the middle of the list each
time. In this event, we have

T (n) = 2T (n/2) + cn,

where c is the unit cost of making a check. Now let us use this iteratively a few
times.

T (n) = 2T (n/2) + cn

= 2(2T (n/4) + cn/2) + cn

= 4T (n/4) + 2cn

= 4(2T (n/8) + cn/4) + cn

= 8T (n/8) + 3cn

= 2kR(n/2k) + k)cn

Continuing in this fashion, we get Now put k = 2n to get

T (n) = nT (1) + cn log(n),

so that T (n) = O(n log(n)), or that T (n) is at worst proportional to n log(n).

In a worst case scenario with a ton of bad luck, this can become quadratic.
We can by and large prevent that by using a preliminary step of swapping the
first element with some other randomly chosen element and proceeding with the
pivot process.

3 Summation of Rational Functions

Consider the familiar sum
∞∑

n−1

1

n(n+ 1)
.

6



We have all seen the familiar demonstration that this is actually a telescoping
sum; here it is

N∑
n−1

1

n(n+ 1)
=

N∑
n−1

1

n
− 1

n+ 1
= 1− 1

N + 1
.

Now let N →∞ to see that

∞∑
n−1

1

n(n+ 1)
= 1.

Can this method be expanded to handle other situations? Here we show a
modest extension. Suppose we wish to find

∞∑
n=1

n

(n+ 1)(n+ 2)(n+ 3)
.

We know that this converges by limit comparison with

∞∑
n=1

1

n2
.

Begin by performing the partial fractions expansion

n

(n+ 1)(n+ 2)(n+ 3)
=

A

n+ 1
+

B

n+ 2
+

C

n+ 3
.

Clearing the denominators we obtain

n = A(n+ 2)(n+ 3) +B(n+ 1)(n+ 3) + C(n+ 1)(n+ 2).

Taking n = −1 we get
−1 = A(1)(2) = 2A

so we have
A = −1/2.

Taking n = −2 we get
−2 = B(−1)(1) = −B,

so B = 2. Finally, taking n = −3 gives

−3 = C(−1)(−2) = 2C,

so C = −3/2. Hence, we have for any positive integer N ,

N∑
n=1

n

(n+ 1)(n+ 2)(n+ 3)
= −1

2

N∑
n=1

1

n+ 1
+ 2

N∑
n=1

1

n+ 2
− 3

2

N∑
n=1

1

n+ 3
.

7



Now we re-index subtract, and clean up to see that

N∑
n=1

n

(n+ 1)(n+ 2)(n+ 3)
= −1

2

N+1∑
n=2

1

n
+ 2

N+2∑
n=3

1

n
− 3

2

N+3∑
n=4

1

n
.

= −1

2

(
1

2
+

1

3
+

N+1∑
n=4

1

n

)
+ 2

(
1

3
+

1

N + 2
+

N+1∑
n=4

1

n

)

− 3

2

(
1

N + 2
+

1

N + 3
+

N+1∑
n=4

1

n

)

= −1

2

(
1

2
+

1

3

)
+ 2

(
1

3
+

1

N + 2

)
− 3

2

(
1

N + 2
+

1

N + 3

)

Let N →∞ to conclude that

∞∑
n=1

n

(n+ 1)(n+ 2)(n+ 3)
= − 5

12
+

2

3
=

1

4
.

To convince the timid, we provide this little Python program to play with.
Note: Use Python 3 or cast n in the function to a float.

def a(n):

return n/((n+1)*(n+2)*(n+3))

total = 0

for k in range(1, 101):

total += a(k)

print("total = %s" % total)

running it produces a result of .2404. Go to the 1000th partial sum and you get
.2490.

Recall the definition of the Riemann Zeta Function,

ζ(s) =

∞∑
n=1

1

ns
, s > 1.

This is a differentiable (in fact, complex analytic) function defined on (1,∞).
This function can be evaluated analytically for positive even integers values of
n. For example, ζ(2) = π2/6 and ζ(4) = π4/90, and ζ(6) = π6/945. You can
see some very hairy calculations carried out at [1]. These evaluations can be
accomplished by appealing to the Parseval Theorem for Fourier Series; a good
reference is [2]. This book is very accessible to a good Calculus student and
quite inexpensive.

8



We will perform a calculation that uses the Zeta function. Consider the
series

∞∑
n=1

1

n2(n+ 1)
.

We begin by performing the partial fractions expansion

1

n2(n+ 1)
=
A

n
+
B

n2
+

C

n+ 1)
.

Clearing denominators gives

1 = An(n+ 1) +B(n+ 1) + Cn2.

Put n = 0 to obtain 1 = B. Next, put n = −1 to get 1 = C. By picking
coefficients, we have A+ C = 0, so C = −1.

Hence, we have

1

n2(n+ 1)
= − 1

n
− 1

n2
+

1

n+ 1)
.

Summing, we get

N∑
k=1

1

n2(n+ 1)
= −

N∑
k=1

1

n
+

N∑
k=1

2

n2
+

N∑
k=1

1

n+ 1)
.

Now trim the sums and re-index as we did before to get

N∑
n=1

1

n2(n+ 1)
= −

N∑
n=1

1

n
+

N∑
n=1

2

n2
+

N∑
n=1

1

n+ 1
.

Re-indexing, we have

−
N∑

n=1

1

n
+

N∑
n=1

1

n+ 1
= −

N∑
n=1

1

n
+

N+1∑
n=2

1

n
= −1 +

1

N + 1
.

Reassembling the pieces we have

N∑
n=1

1

n2(n+ 1)
=

N∑
n=1

2

n2
− 1 +

1

N + 1

Now let N →∞ to get

∞∑
n=1

1

n2(n+ 1)
= ζ(2)− 1 =

π2

6
− 1

This procedure lets the student compute many sums that we now are content
to say are convergent by the integral or limit comparison test.

9



4 References

[1] Tolstov, G, Fourier Series

[2] Wolfram Math World article on the Riemann Zeta Function, http://mathworld.
wolfram.com/RiemannZetaFunction.html

10

http://mathworld.wolfram.com/RiemannZetaFunction.html
http://mathworld.wolfram.com/RiemannZetaFunction.html

	The sum k=1n kr
	An Analysis of Some Sorting Procedures
	Summation of Rational Functions
	References

